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 The performance of gas sensor will differ and vary due to the surrounding 

environment changing, the way of implementation, and the position of the 

sensors to the source. To reach a good result on gas sensors implementation, 

a performance test on sensors is needed. The results of the tests are useful for 

characterizing the properties of the particular material or device. This paper 

discusses the performances of metal oxides semiconductor (MOS) sensors. 

The sensors are tested to determine the sensors' time response, sensors' peak 

duration, sensors' sensitivity, and sensors' stability of the sensor when applied 

to the various sources at different range. Three sources were used in 

experimental test, namely: ethanol, methanol, and acetone. The gas sensors 

characteristics are analyzed in open sampling method in order to see the 

sensors' sensitivity to the uncertainty disturbances, such as wind. The result 

shows that metal oxides semiconductor sensor was responsive to the 3 

sources not only in static but also dynamic conditions. The expected outcome 

of this study is to predict the MOS sensors' performance when they are 

applied in robotic implementation. This performance was considered as the 

training datasets of the sensor for odor classification in this research. From 

the experiments, It was got, in dynamic experiment, the senrors has average 

of precision of 93.8-97%, the accuracy 93.3-96.7%, and the recall 93.3-

96.7%. This values indicates that the sensors were selective to the odor  

they sensed. 
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1. INTRODUCTION 

In recent years, sensors have received people’s attention as one of the important devices in 

electronic systems and enormous capability for information processing has been developed within the 

electronics industry [1]-[4]. Of all sensors, gas sensors and light sensors have been most actively studied. Gas 

sensors are defined as a device that can substitute human olfaction. It is included as an e-nose.  

Air quality monitoring [5]-[7], gas leakage localization [8], [9], forest monitoring [10], [11], military 

[12], [13], are some examples of gas sensor applications. In getting the information of the applications above, 

some sensors are needed in order to convert the environment physical phenomenon (in this case temperature, 

humidity, and pollutant concentration) into electrical signals. As such, sensors represent part of the interface 

between the physical world and the world of electrical devices, such as computers [6]. 

Gas sensor integrated to mobile robots can give some advantages, including safety, security, and 

environmental inspection [14]. The robots can be employed to the dangerous area with high concentration of 

odor contamination without being afraid of to be killed by the poisonous gas. They can also be used to 

monitor the environmental air quality continuously without being tired and giving inaccurate information. 

Moreover, train the robots are cheaper than human or animals [15]. 
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The integration of the gas sensors is not only to the ground mobile robot but also to the under-water 

robot [16] and the flying robots, such as UAVs [17], [18]. Each of them has different purposes and gives 

different benefits. For the underwater robots' application, the goals are for searching the environmentally 

interesting phenomena, unexploded ordnance, undersea wreckage, and sources of hazardous chemicals or 

pollutants [16]. In similar way, the UAVs application's goals are for monitoring, searching, and localizing a 

hazardous chemical. Some researchers developed the research of e-nose in different manners. In order to 

increase the ability of the sensors, some of researchers conducted researches in the area of: sensor networks 

[19], sensor arrays [20], [21], and even sensor performance enhancements [22], [23]. 

Metal Oxide Semiconductor (MOS) sensors are one of the most investigated groups of gas sensors. 

There are a lot of researches used them as their sensors [20], [24]–[27]. The reasons of choosing this sensor 

are due to: low cost and flexibility associated to their production, simplicity of their use, large number of 

detectable gases/possible application [28], robust, light weight, fast response [29]. However, there was only 

little attention of researchers on MOS Performance. 

The deployment of gas sensors in real environment (indoor or outdoor) faces some problems, such 

as the phenomenon of patches and eddies that occur due to the turbulent airflow of the wind [30], [31]. When 

molecules move away from the source, the concentration decreases, hence molecular diffusion and turbulent 

diffusion processes have the main role in determining the shape of plume. Molecular diffusion causes random 

motion of the molecules to move gradually apart, while turbulent diffusion tears apart the cloud of molecules 

physically by air turbulence [32]. 

Molecular diffusion effect on the plume shape can be neglected [31] due to its small effect on the 

plume shape. It is contradictive with turbulent diffusion that can change the shape of the plume. Therefore, 

the turbulent diffusion that dominates the dispersion of odor molecules becomes crucial parameter in odor 

localization. Some researchers have investigated the odor characteristics in airflow environment [33]-[35] 

and turbulence environment [36], [37]. However, the experiments were done in experimental simulation, not 

in real experimental environment. Although, there were also some real experiments in odor analyses, none of 

them analyzed the performance of the MOS sensor to the odor dispersion. Ali Marjovi in [31], [38] discussed 

about the coverage area of the sensors. However, this experiment was also done in simulation. In most other 

sensor performance tests, the data was taken using a chamber [39]-[41] where the sensors were placed in a 

chamber and the sources were injected to the chamber using a tube to pass through a tiny in the chamber. 

As mention above, in odor classification, the first step that should be paid attention is the 

performance of gas sensors. Therefore, in this paper, the response of the MOS sensors was analyzed. From 

the previous researches it can be concluded that the data got from MOS sensor in conditioned environment 

(controlled temperature, humidity and sampling) will be different with the data in real environment. Marco 

Trincavelli in [42] stated that in a real-world and dynamic environment, the steady state of the sensors is 

almost never reached. The analysis of the system can only be done based on the transient phase of the signal. 

Thus, in this research, for having the result of quite the same with the real situation, gas sensors' performance 

in this research were tested in open environment.  

The contribution of this paper is to provide performance of MOS sensors that can be used a database 

determination of the sensors for the odor classification application. This paper consists of 6 parts, i.e.: part 1 

describes the background of the research, part 2 introduces component and parameters in odor localization 

tasks, part 3 explain the experimental setup, part 4 displays the result and the discussion of the experiment, 

part 5 indicates the future work, and part 6 is the conclusion of the research. 

 

 

2. COMPONENTS AND PARAMETERS IN ODOR CLASSIFICATION TASKS 

2.1. E-noses 

E-noses are the sensors made by the researchers for imitating the human olfaction. They have been 

applied in wide variety of applications, such as: health, military, food, agriculture, air quality, etc. (see Table 

1). They may consist of single sensor or of some sensors to build sensor arrays. The material used in making 

them come from many materials, such as polymers [43]-[45] and metal oxide [11], [46] (as presented in 

Table 1). These material w orks under the change of resistance or conductance. When there is a 

physical/chemical change in the property of the sensors’ material, as the result of the emersion of detected 

odor, the resistance or the conductance of the sensor will change [47]. 

According to J. W. Gardner [48], some materials used in e-noses come from inorganic 

semiconducting materials, such as oxides and catalytic metals. In oxides, the version can be in the form of 

thick and thin film. The sensors made of this material type can work in the temperature of 100-600
0
C under 

the sensitivity of 0.1-100 ppm [48]. Other materials that can also be used in making the e-nose are in the 

organic forms, such as polymers and biological lipid. The poly(pyrrole) and poly(aniline) are the samples of 

polymers materials. The sensors made from organic material can be operated at temperature 20-60
0
C and 
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their sensitivity is 0.1-100 ppm [48]. As mentioned above, researchers chose MOS sensor due to their low 

cost and simplicity in use. Some more advantages and disadvantages of MOS materials and other e-noses' 

material are listed in Table 2.  
 

 

Table 1. Applications of Sensor Arrays 
Application Array Type References 

Health 

Cancer 

Detection 

8 amperometric electro-chemical sensors, 2 non-dispersive 

infra-red optical devices and a 1photo-ionisation 
WOLF [51] 

Respiratory Inorganic conductor and insulating organic polymer Cyranose 320® [44] 

Wound 

Inspection 
15 Sensors arrays TGS, MQ, WSP, QS, SP3S, AQ [52] 

Food 

Red wines 14 gas arrays of inorganic metal oxide (MOX) [24] 

Mushroom 12 Metal Oxide Sensors FOX 3000 [53] 

Olive Oils Metal Oxide Sensors AlphaMos [25] 
Coconut Oil Polymers [45] 

Onions MOS chemical gas sensors ISENose 2000 [26] 

Air Quality 
Indoor Thin film of metal oxide semiconductor [20] 
Outdoor Two sensors arrays with 6 Figaro sensors each (MOX) [27] 

Localization   

Agriculture 
Post harvest 10 different metal oxide sensors PEN 3 [11] 
 Conducting polymer [54] 

Compost 10 different metal oxide sensors (MOS) PEN 3 [46] 
Military Warfare agent Oxide thin film [12] 

  15 sensors, MOS [13] 
 

 

Table 2. Advantages and Disadvantages of E-Nose Materials 
Materials Advantages Disadvantages 

Inorganic 

- Inexpensive [48]. 
- Usable life-span of 3 to 5 years [55]. 

- quite sensitive to the combustible material [48]. 

- Has high sensitivity [55]. 
- low susceptibility to changing environmental 

conditions [55]. 

- consume much more power [55]. 

- suffer from poor stability [48]. 
- insensitive to the sulphur and nitrogen [48]. 

- slow recovery after the target gas is removed (15-70 s) [55]. 

- poor selectivity [55]. 

Organic 

- consume less power [55]. 
- Much wider choice of material [48]. 

- Can interact with different classes of odorant 

molecules [48]. 
- Easier to process [48], [55]. 

- effects of aging which manifests in sensor drift . 

- [55]. 
- a poor understanding of the mechanism behind the 

conducting polymers [55]. 

Quarts 

crystal 
(piezo-

electronic 

substrate) 

- offer rapid response (10 s) [55]. 

- Low power consumption [55]. 
- Long life time [55]. 

- possibility to control the selectivity over a wide 

range [55] 

- low sensitivity to the target gas [55]. 

- Not robust in the variations of humidity [55]. 

- Complex fabrication processes [55]. 
- Poor signal to noise performance [55]. 

 

 

By depositing a metal oxide film onto a substrate, such as glass or ceramic, metal oxide gas sensors 

(MOS-type e-nose) can be made. The electrodes can be made by platinum, silver or aluminum that are also 

deposited onto the substrate. The heating element is printed on the back. MOS-type e-noses are widely used 

for detecting multiple odor sources mixtures. Its sensor arrays are capable of detecting multiple toxic 

compounds, particularly inorganic and organic types [49]. The operation of metal oxide sensors depends on 

the change of the oxide conductance when they interact with the odor. This change is usually proportional to 

the concentration of the odor [47]. The sensors come from this material (in this case the n-type material) will 

operate as follows: the oxygen comes from the air reacts with the surface of the sensor. The free electrons on 

the surface or at the grain boundaries of the oxide grains will be trapped. It produces large resistance in these 

areas due to the lack of carriers and the resulting potential barriers gas like produced between the grains 

inhibit the carrier mobility. When sensor is introduced to a reducing H2, CH4, CO, C2H5 or H2S [47] [50], 

the resistance of the sensor will become lower because the gas that reacts with the oxygen will release an 

electron. Due to this situation, the potential barrier becomes lower. That will allow the electrons to flow. 

Therefore, the conductivity increases [47]. 

Conducting polymers can be produced using chemical and electrochemical development. Their 

molecular sequence structure can be changed suitably by co-polymerization or structural derivations [3]. Two 

electrodes that are separated by a gap can be made using micro-fabrication techniques. Then, the conducting 

polymer is electro-polymerized between the electrodes by cycling the voltage between them [3]. Varying the 

voltage sweep rate and applying a series of polymer precursors has purpose to enlarge the variety of active 

materials. The electrical connections will be established between the two parallel electrodes. This connection 

permits the relative resistance change to be measured. The heater is required when metal oxides are used as 

the sensing material because very high temperatures are required for effective operation of metal oxide 
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sensors [47]. Response time is inversely proportional to the polymer's thickness. In order to increase the 

response times, micrometer-size conducting-polymer bridges are formed between the contact electrodes [3]. 

Arshak [47] shows the response time for conducting polymer composites in 4 categories, i.e: 1. <2-4 s; 2. 60 

s; 3. 180-240 s; 4. 20-200 s. Thus, it can vary from second into minutes. 

Besides conducting materials, there are some other materials usually used in making an e-noses’ 

sensor. Lilienthal in [55] stated that the detection of an odor can also be done using optical sensors, surface 

acoustic wave sensors, gas sensitive field effect transistors and quartz microbalance (QMB) sensors. An 

acoustic wave sensor is usually made of piezo-electronic substrate, i.e. quart. An alternating electric field is 

applied to generate an elastic wave in the quartz crystal. Temporarily absorbed molecules perturb the 

propagation of the acoustic waves due to the effect of the added mass and by changing the viscoelastic 

properties of the coating layer. The resulting shift of the fundamental frequency of the quartz crystal is then 

measured as the output of the sensor [55]. 

The structure of e-nose consists of some parts, namely sensor array, signal transducer, and pattern 

recognition. This olfactory system can be seen in Figure 1. Sensor arrays are the first part of the olfactory 

system that has function to detect or sense the input of the system. The input of the system is usually in the 

form of odorant molecules. In the second part, there is signal transducer that has function to transduce the 

conductivity of material into electrical signal. That signal will be pre-processed and conditioned in the signal 

transducer. At the end part of the olfactory system, signal will be analyzed using pattern recognition in order 

to determine the concentration of the odor being measured. 
 

 

 
 

Figure 1. Olfactory system (a) E-nose, (b) Mammal 
 

 

The MOS sensors are suitable for recognizing either reducing or oxidizing gases by or conductive 

measurements [56]. Sensor's performance is one of the important parts of the sensor application. By knowing 

the performance, it can be easily applied to an appropriate application with certain limitation and scope. 

According to V. E. Bochenkov [57], Some of parameters should be paid attention in order to characterize 

sensor performance, namely: sensitivity, selectivity, stability, detection limit, dynamic range, linearity, 

resolution, response time, recovery time, working temperature, hysteresis, and life-cycle. Part 2 of this paper 

gives a more explanation of these parameters. 

 

2.2. Dispersion Model 
The gas can move easily from one place to another place due to the wind or the difference of 

concentration in one place. The longer the distance of the gas from the source is, the smaller the 

concentration will be. In other word, the concentration near the source will be higher than the concentration 

of the gas far from the source. The turbulence and the diffusion that can cause the gas to move are influenced 

by the environmental condition, especially the wind characteristics. The movement of the gas from its source 

to the area around it will produce a concentration pattern or always called as the plume dispersion. The 

change of the concentration pattern will continuously happen in accordance with the occurrence of the wind 

that moves in the same direction or in the different direction.  

The plume dispersion can be modeled using mathematic equation. In general, the models can be 

divided into two forms, i.e., 1. Basic Model; and 2. Diffusion Model. In basic model, the gas only moves due 

to the air flow speed. The concentration using this model is considered to be constant. Thus, the 

concentration in one place in one time is the same with the concentration in another place in different time. 

The basic model uses the equation as represented in Equation 1. 
 
∂C

∂t
+ u

∂C

∂x
= 0         (1) 

 

where: 𝐶 = gas concentration (kg/m
3
) 

𝑢 = air flow speed (m/s) 

𝑡 = time (s) 

𝑥 =  𝑥 coordiname (m) 
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For the diffusion models, there are a lot of researchers offered some solution. In paper [58], it 

discussed about Gaussian models and Farrel's filamentous model. These models assumed the meteorological 

condition and plume emission are stationary. For the 2 dimension room, the concentration of the gas would 

be the same with Equation 2, while for 3 dimension room the equation would be the same with Equation 3. 
 

𝐶(𝑥, 𝑦, 𝑡) =
𝑀

𝐿𝑧4𝜋𝑡√𝐷𝑥𝐷𝑦
𝑒𝑥𝑝 (−

(𝑥−𝑥0−𝑢𝑡)2

4 𝐷𝑥𝑡
−

(𝑦−𝑦0−𝑣𝑡)2

4 𝐷𝑦𝑡
)    (2) 

 

𝐶(𝑥, 𝑦, 𝑧, 𝑡) =
𝑀

(4𝜋𝑡)3/2√𝐷𝑥𝐷𝑦𝐷𝑧
𝑒𝑥𝑝 (−

(𝑥−𝑥0−𝑢𝑡)2

4 𝐷𝑥𝑡
−

(𝑦−𝑦0−𝑣𝑡)2

4 𝐷𝑦𝑡
−

(𝑧−𝑧0−𝑤𝑡)2

4 𝐷𝑧𝑡
)  (3) 

 

2.3. Sensor's Performance 
Sensor performances are really needed for odor classification. By having sensor performance, the 

databases for classification can be got and the odor localization can be achieved. Some of the researchers 

discussed the training data of the sensors are described in the next paragraphs. 

Marco Trincavelli in [42] investigated the odor classification in continuous monitoring. The 

electronic nose's responses were analyzed in five phases, i.e., baseline manipulation, segmentation, feature 

extraction, data normalization, and classification. The databases of the sensors were divided into four 

sampling phases, namely: base line, transient, steady state, and recovery. In controlled time and odor sources, 

the 4 phases can be got easily. It was contradictive, when the sensors were employed in uncontrolled one, the 

steady state could not be reached. It was due to the sensors were not continuously exposed for a long enough 

time to the odor sources. Marco Trincavelli used the transient response data to solve the dynamic odor 

problem. The classification was done by machine learning Relevance Vector Machine (RVM). He claimed 

that RVM was more powerful than SVM in estimating the posterior probabilities. He stated that the 

estimation of the posterior probabilities was important in considering a confidence measure of the decision 

made by the classifier [42].  

Amy Loutfi [60] also tried to solve the problem of odor classification using the transient response of 

the sensors. In that research, the sensors were assumed to be in a state of transition due to when the robots' 

moving, the current concentration values were unknown. The input to the classification algorithm was taken 

from the comparison between a baseline and steady state. The steps of classification include: 1. collecting the 

training data, 2. doing the fractional baseline manipulation, 3. Decomposing the input signals to the training 

algorithm into the feature using Debauchies Wavelet Transforms. 4. Inputting the total wavelet coefficients 

of each odors into Principal Component Analysis (PCA), 5. Classifying the data using Support Vector 

Machine (SVM). The classification of the data was optimized by the Mitchell-Demyanov-Malozemov 

algorithm using a Gaussian Kernel Function.  

Osuna [50] developed the research made by J W Gardner [61]. He used 4 databases of odors with 

different number of classes and various complexities. He stated that in the compression of the data, the sensor 

transient response did not improve the accuracy prediction but impair the accuracy. It could be concluded 

that the database was over fitting [50]. In that research, they concluded that the steady state data of the 

sensors could perform well in separating the classes. However, in that research, their goal was only to show 

the methodology that allowed the evaluation of the technique rather than determining the best techniques. 

Therefore, their conclusion about the best databases for the odor classification was still vague.  

Another research by Osuna et al [62] reviewed 4 multi exponential models, namely: Gardner 

transform, multi exponential transient spectroscopy, Pade Laplace, and Pade Z transform. Their purpose was 

to model the transient response of conductivity-based gas sensors for odor recognition. They concluded that 

Gardner transform was extremely sensitive to the dispersion parameter, while the Pade Laplace and Pade Z 

methods were less sensitive to experimental noise than the spectral techniques and did not require low-pass 

filtering. Some parameters in sensor performances that can be analyzed (as mentioned in sub chapter 2.1.) 

[57] are described as follows: 

 

2.3.1. Sensitivity 

Sensitivity is a change of measured signal per analyte concentration unit [57]. Xin Zhou in [63] 

analyzed the sensitivity of the gas sensor based on ZnFe2O4 spheres and ZnFe2O4 nanoparticles. The gas 

sensor's response to the 30 ppm and 100 ppm acetone were recorded. The gas sensor's response to the acetone 

varied with the change of the temperature. Gas sensor gave low response to the acetone at low temperature 

(200
o
C) due to acetone molecules cannot effectively react with the surface absorbed oxygen species. The 

responses of porous ZnFe2 O4 spheres were good at higher temperature at operating temperature 200
o
C and 

237.5
o
C.  
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2.3.2. Selectivity 

According to V. E. Bochenkov [57] selectivity is characteristics that determine whether a sensor can 

respond to a group of analytes selectively or even to a single analyte specifically. Selectivity is one of 

essential parameters in odor identification [64]. Selectivity will be easy if the odors to be identified are really 

different. It is contradictive when the odors are quiet similar as in paper [65]. The selectivity of the sensors 

will be better by additional methods or techniques, such as the integration of PCA, LDA, NN, SVM, etc.  

 

2.3.3. Stability  

Stability is the ability of a sensor to provide reproducible results for a certain period of time. This 

includes retaining the sensitivity, selectivity, response, and recovery time. One of the gas sensor's stability 

was conducted by Zhen Wen [66]. They tested several gas sensor's parameters in their research, such as: 

sensitivity, detection limit, working temperature, response/recovery kinetics, selectivity, and stability of the 

sensor. In that research, they got that Rhombic Co3O4 nanorod (NR) array-based gas sensor had a good 

stability over the 3 months test. 

 

2.3.4. Detection Limit 

Detection limit is the lowest concentration of the analyte that can be detected by the sensor under 

given conditions, particularly at a given temperature. One of the selective detection researches was offered by 

Qianqian in [67]. They observed ZnO gas sensor to the acetone sources. They got that detection limit for the 

acetone was 0.25 ppm.  

 

2.3.5. Dynamic Range 

Dynamic range refers to the analyte concentration range between the detection limit and the highest 

limiting concentration. 

 

2.3.6. Linearity 

Linearity refers to the relative deviation of an experimentally determined calibration graph from an 

ideal straight line. 

 

2.3.7. Resolution 

Resolution means the lowest concentration difference that can be distinguished by sensor. 

 

2.3.8. Response Time 

Response time is the time required for sensor to respond to a step concentration change from zero to 

a certain concentration value. Qianqian [67] as mentioned in sub chapter 2.3.4, also analyzed the response 

time of the ZnO sensor to the acetone. The response time of the sensor was as short as 3 s. 

 

2.3.9. Recovery Time 

Recovery time is the time it takes for the sensor signal to return to its initial value after a step 

concentration change from a certain value to zero. 

 

2.3.10. Working Temperature 

Working temperature is the temperature that corresponds to maximum sensitivity. As in the example 

mentioned in Sub Chapter 2.3.1, porous ZnFe2 O4 spheres were good at operating temperature 200
o
C and 

237.5
o
C, it means that the working temperature range of that sensor was 200

o
C until 237.5

o
C. It is due to the 

sensitivity of the sensor become quite high in that range. Another example of working temperature can be 

seen from the research of Zhen Wen [66] (as stated in sub chapter 2.3.3) that analyzed some parameters in 

gas sensor's performances. Ethanol analyte was chosen as the gas source in their research. The optimal 

working temperature of Rhombic Co3O4 nanorod array based gas sensor for maximum sensitivity was at 

160
o
C. The response of the sensor increased with the operating temperature and then decreased with a further 

rise of the operating temperature. The phenomena were explained by Zhen Wen using the adsorption and 

desorption kinetics on the surface of the semiconducting metal oxides. When the working temperature was 

small (below 150
o
C), the chemical activation was also small; therefore the response was also small (below 

10). When the operating temperature was really high (above 200
o
C), the adsorbed gas molecules escaped 

before their reaction; therefore, the response would also decrease (below 10). The working temperature was 

between 150
o
C until 200

o
C, with the highest sensitivity at 160

o
C.  
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2.3.11. Hysteresis 

Hysteresis means the maximum difference in output when the value is approached with an 

increasing and a decreasing analyte concentration range. 

 

2.3.12. Life Cycle 

Life cycle is the period of time over which the sensor will continuously operate. 

 

 

3. EXPERIMENTAL SETUP 

In this research, the response pattern of the sensors' array (TGS 2600, TGS 2602, and TGS 2600) 

was analyzed in the real environment in order to see the characteristics and performance of each sensor (The 

use of more than one sensor in odor classification is very important. It is due to the output of one sensor can 

refer to different concentration of various analytes [39]). The main goal of this research is to analyze the 

active coverage area of gas sensors in order to see the robustness of the sensors. By having the sensor's 

performance data, a planning of using an appropriate method for plume finding prediction in odor 

localization application can be built.  

To the author's knowledge, there is no one discussed about the performance of gas sensors for the 

odor classification. In this research, the data of the sensor performance will be analyzed in four categories, 

namely: sensors' time response, sensors' peak duration, and sensors' sensitivity and sensors' stability. The 

temperature of the sensor will not be discussed in detail due to the data got from the first step in this research 

would be supplied as the data bases of odor classification which was done in the real environment. Therefore, 

in this research, the environmental temperature was taken around 28 0C until 31 0C as the real temperature 

measured in the experimental room. 

 

3.1. The Experimental Environment 

The experiment was done in a room 4 m x 10 m. The responses of the sensors were measured using 

2 scenarios. At first scenario, the source was exposure to the environment for 20 s. The distance of the 

sensors to the sources was varied by 60 cm for each position. In the second scenario, the source was switched 

into on and off condition to see the sensitivity of the sensors. 

 

3.2. Gas Sources 

The gas sources were ethanol, methanol and butanol. The experimental source was set as shown in 

Figure 2. This source set-up imitated the odor sources introduced by Thomas Lochmatter [15]. The sources 

used in this experiments are ethanol (C2H6O), methanol (CH3OH), and acetone (C4H10O). Their molecular 

weights are heavier than air (28.97 g/mol), namely: 46.06844 g/mol for ethanol, 32.04 g/mol for methanol, 

and 58.08 g/mol for acetone. Therefore, They can evaporate quickly due to their low boiling point (780C, 

640C, 560C respectively). Therefore, Their plume tends to be in the ground. In addition, their low boiling 

points enables to make gas sources in a spontaneous evaporation without heating. Liquid sources were 

transformed to be gas using the help of the wick and the fresh air supplied to the sources' chamber. The wick 

and a piece of tube (for the fresh air inlet) were used to increase the air-ethanol interface surface. Evaporated 

ethanol was mixed with the air on the top part of the chamber. This mixed gas was then pumped toward the 

gas outlet. 

The air pump used as the experimental sources is capable to exhaust 14.0 Littre liquid source in a 

minute. It has six outputs that enable the deployments of the sources to any possible and desired points. The 

pressure of the pump is more than 0.016 MPa (≈ more than 2.32 psi) with 50-60 Hz frequencies. The type of 

the pump is a diaphragm pump that allows the output (in this case ethanol concentration) to be controlled. In 

addition, it is equipped with a knob that can be turned around from the lowest pressure to the highest one. 

This condition gave the easiness of controlling the concentration to be used. 
 

 

 
 

Figure 2. The gas sources setup 
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3.3. Gas Sensors 

Three Metal Oxides gas sensors used in this experiment were TGS 2620, TGS 2602, and TGS 2600. 

These sensors are combined together in order to make an array sensor. The sensing element in TGS 2600, 

2620, and TGS 2602 is made of a metal oxide semiconductor layer formed on the alumina substrate of a 

sensing chip together with an integrated heater. The conductivity of the sensor will change when there is a 

detected gas. Trough a simple electrical circuit, this change will be converted into an output signal 

correspond to the gas concentration.  

The TGS 2600 has high sensitivity to low concentrations of gaseous air contaminants such as 

hydrogen and carbon monoxide which exist in cigarette smoke [68].  

The TGS 2620 has high sensitivity to the vapors of organic solvents as well as other volatile vapors. 

It also has sensitivity to a variety of combustible gases such as carbon monoxide, making it a good general 

purpose sensor [69].  

TGS 2602 has high sensitivity to low concentration of odorous gases, such as ammonia and H2S 

generated from waste material [70]. 

 

3.4. Block Diagram  

The simple block diagram of the gas sensor development is shown in Figure 3. The chemical 

sources detected by sensors array were being converted into physical parameter. This parameter was 

processed in microcontroller and send to the output display. In this research, the output was also sent to the 

computer by means of wireless communication. The ADC data of the sensors were observed and processed 

to get the value of sensor's response.  

 

 

 
 

Figure 3. The block diagram of sensors array development 

 

 

4. RESULTS AND DISCUSSION 

4.1. Sensor Performance  

In this sub chapter, the sensors' performances that were measured were focused on the sensors' time 

response, sensors' peak response duration, the sensitivity and the stability response of the sensor, while the 

selectivity performance of the gas sensors was determined in the sub chapter 4.3. The selectivity performance 

was indicated by the ability of the sensor in determining and classifying the odor that they sensed. In this 

research, SVM technique was used in order to enhance the ability of gas sensors in classifying the odor.  

The speed of the sensor's response measured in different position was shown in Figure 4, the 

sensors' peak response duration was represented in figure 5, the sensitivity and stability response of the 

sensors was displayed in Figure 6 and Figure 7. Each of the sensors in response time testing showed that the 

response of them become slower due to the longer of the distance of the sources to reach the sensors. It is 

also the same with the sensors' peak response duration. The duration of the peak response would be shorter 

when the distance between the source and the gas sensors become longer. 
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(a) 

 

 

(b) 

 

 
  

(c) 

Figure 4. Sensor's time responses to some sources(a) to the ethanol, (b) to the methanol, and (c) to the 

acetone 

 

 

  
 

(a) 

 

 

(b) 

 

 
  

(c) 

Figure 5. Sensor's peak duration responses for 3 different sources (a) ethanol, (b) methanol, (c) acetone 
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(a) 

 

 

(b) 

 

 
  

(c) 

Figure 6. Sensor's sensitivity for 3 different sources (a) ethanol, (b) methanol, (c) acetone 

 

 

 
 

 

(a) 

 

 

(b) 

 

  

  

(c)  (d) 

Figure 7. Sensor's stability for 3 different sources (a) ethanol, (b) methanol, (c) acetone 
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The sensitivity of the sensors shown in Figure 6 indicated that the TGS sensor was sensitive enough 

the change of the environment. In taking the data, the odor sources were exposed and unexposed to the robots 

interchangeably. The source was switched on for 120 s and was switched off 120 s. The data was got in the 

static position where the robots were placed in the 60 cm away from the source in the straight face to face 

position. The concentration of the acetone that the robots measured was the highest one (above 900 of ADC 

value), while the methanol was the smallest one (above 500 of ADC value). The detecting values of each gas 

sensors were not directly change when the processes of on and off happened. All of the sensors waited 

around 30-50 seconds until they changed their reading value based on the condition of the gas sources. It was 

due to the sensors needed more time to be back to its initial condition. When the source has been switched 

off, sensors still sensed the gas left in their surrounding, therefore, the sensors still read the gas concentration 

as high value for about 30-50 seconds after the gas source off. To overcome and minimize this transition 

condition, a fan could be used. It could help to clean the gas residue that stacked to the sensors' area. 

The stability response of the sensors was represented in Figure 7. This stability was needed in order 

to measure the time occupied by the sensors in detecting the source in a stable condition. By knowing the 

stability response, the mobile robots intelligences where the gas sensors were placed can be designed 

properly. In this research, the stability data got by collecting the sensors' response to the change of situation. 

The ability of the sensor to reach its initial condition was measured and recorded. From Figure 7, it can be 

stated that the gas sensors used in this experiments were stable enough. The concentration measured by the 

sensors was almost the same from the first sampling until the fifteenth sampling. Figure 7.a-7.c shows the 

stability of the sensors to the ethanol, methanol, and acetone. Figure 7.d represents the sensors' stability of the 

sensors to all of the sources used in the experiment. The gas sensors used in this experiment has the stability 

response to each sources around 34 second until 45 second for each sensors.  

 

4.2. Collecting Data for the Training Datasets in Odor Classification 
The training datasets were got from the gas sensors of the robots that were placed in a fix place 

approximate 60 cm from the source. The experimental environment was exposed to the gas source for 20 

seconds. Then, the data came from 3 sensors of each robot were plotted in one graphics as shown in Figure 8. 

These data became the training datasets for the classification. The data was grouped into their classes. When 

exposed to the ethanol source, the data that was sensed by TGS 2600, TGS 2692, and TGS 2620 as ethanol 

classes were recorded, as well as the data of the other source, i.e. methanol and acetone (see Figure 8. a). 

Figure 8. b and 8. c show the response of the gas sensors for methanol class and the acetone  

class respectively. 
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(a) 

 

 
 

(b) 

 

 
 

(c) 

Figure 8. Classes used as data training for gas classification 

 

 

4.3. Odor Classification Using Support Vector Machine 

4.3.1. Using Static sensor 

The experimental results of odor classification were conducted using two conditions, i.e. using static 

sensors and mobile sensors. Static sensors data were taken by deploying the robots that were equipped with 

gas sensors TGS 2600, TGS 2602, and TGS 2620 to the experimental environment. The robots were placed 

in front of the gas source and moved them to a certain place manually. They were moved to get further from 

the source in scale of 0.5 m in each movement. The data were recorded in Table 3. From the data in Table 3, 

the accuracy, precision, and recall for each class can be calculated. The result of the calculation is presented 

in Table 4. The experiments were done in the experimental room for 10 times testing. The ability of the 

robots to guess what the sources they sensed was different. Most of them were successful in determining the 

source correctly. The stability of the robots was around 89.5-90.8 %, the accuracy was 89.2-90.8 %, and 
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recall around 89.2-90.8 %. This value indicated that the gas sensors in static experiment have good 

performance in selective parameter. 

 

 

Table 3. Confusion Matrix of Gas Classification in Dynamic Experiment 
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Distance 

(m) 
Gas Type 

Ethanol Methanol Acetone 

G1-1 G1-2 G1-3 G1-1 G1-2 G1-3 G1-1 G1-2 G1-3 

0.5 
Ethanol 9 9 9 1 0 0 0 1 1 

Methanol 1 0 1 8 10 9 1 0 0 
Acetone 1 0 1 0 1 0 9 9 9 

1 

Ethanol 9 9 9 1 0 1 0 1 0 

Methanol 1 0 0 9 9 9 0 1 1 

Acetone 1 1 0 0 0 1 9 9 9 

1.5 
Ethanol 9 9 9 0 1 1 1 0 0 

Methanol 1 1 0 9 9 9 0 0 1 

Acetone 0 0 0 1 1 1 9 9 9 

2 
Ethanol 9 9 9 0 0 0 1 1 1 

Methanol 0 1 1 9 9 9 1 0   

Acetone 1 0 1 0 1 0 9 9 9 

 

 

Table 4. Calculation of Precision, Accuracy and recall in Dynamic Experiment 
Distance 

(m) 
Gas Type 

G1-1 G1-2 G1-3 

Pre Acc Rec Pre Acc Rec Pre Acc Rec 

0.5 

Ethanol 81.8 

86.7 

90.0 100.0 

93.3 

90.0 81.8 

90.0 

90.0 

Methanol 88.9 80.0 90.9 100.0 100.0 90.0 

Acetone 90.0 90.0 90.0 90.0 90.0 90.0 

1 

Ethanol 81.8 

90.0 

90.0 90.0 

90.0 

90.0 100.0 

90.0 

90.0 

Methanol 90.0 90.0 100.0 90.0 81.8 90.0 

Acetone 100.0 90.0 81.8 90.0 90.0 90.0 

1.5 

Ethanol 90.0 

90.0 

90.0 90.0 

90.0 

90.0 100.0 
 

90.0 

90.0 

Methanol 90.0 90.0 81.8 90.0 81.8 90.0 

Acetone 90.0 90.0 100.0 90.0 90.0 90.0 

2 

Ethanol 90.0 

90.0 

90.0 90.0 

90.0 

90.0 81.8 

90.0 

90.0 

Methanol 100.0 90.0 90.0 90.0 100.0 90.0 
Acetone 81.8 90.0 90.0 90.0 90.0 90.0 

Average 89.5 89.2 89.2 91.2 90.8 90.8 90.6 90.0 90.0 

 

 

4.3.2. Using Mobile Sensors 

For the dynamic sensors, the experimental data was got using the 3 mobile robots, i.e., G1-1, G1-2, 

and G1-3. The robots were placed near the sources with two starting points, 1 m and 2 m. Then, they were 

commanded to get closer to the sources and asked to decide what kind of sources they have detected. Each 

sources was dispersed to the environment alternately. The robots should able to recognize the smells of the 

gas sources using their intelligences that have been embedded to them. The robots were introduced to the 

sources (ethanol, methanol, and acetone) ten times in each distance. Then, the success and fail of the robot in 

detecting the sources were measured and recorded in Table 5. Figure 9 was the examples of the data sent by 

the robots to the server. The first number of each picture in the series data represented in each pictures 

indicate the type of robots. 1 indicates G1-1 robot, 2 means G1-2 robot, and 3 for G1-3 robot. The last 

parameters in each line of data series show the type of data sensed. Figure 9. a shows that at the first, G1-1 

robot classified the odor its sensed as methanol, then after several times it decided that it was ethanol. All of 

the robots at last decided that the odor they sensed as ethanol. When the data sent to the server be the same 

with the odor source for several times, then, in this condition, it can be concluded that the robots have been 

able to recognize and classify the odor correctly. Figure 9(b) until Figure 9(f) show part of the data sent by 

the robot to the server, Figure 9(a) until 9(c) for 1 m distance and Figure 9(d) -Figure 9(f) for 2 m distance. 
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(a) Ethanol  

 

(b) Methanol 

 

(c) Acetone 

 
 

 
 

 

 

 

 

 

(d) Ethanol 

 

(e) Methanol 

 

(f) Acetone 

Figure 9. Classification result, a-c at 1 m distance, d-f at 2 m distance 

 

 

Table 5 show the confusion matrix for the classification in dynamic experimental setup while the 

calculation of the precision, accuracy and recall is shown in Table 6. The dynamic experiment also show the 

succes in classifying the odor sources. The average of precision success was 93.8-97 %, the accuracy was 

93.3-96.7 %, and the recall was 93.3-96.7 %. This values indicates that the sensors were selective to the odor 

they sensed. 

 

 

Table 5. Confusion Matrix of gas classification in dynamic experiment 
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Starting 
point (m) 

Gas Type 
Ethanol Methanol Acetone 

G1-1 G1-2 G1-3 G1-1 G1-2 G1-3 G1-1 G1-2 G1-3 

1 

Ethanol 10 10 10 0 0 0 0 0 0 

Methanol 0 1 0 9 9 10 1 0 0 

Acetone 0 0 0 0 0 0 10 10 10 

2  

Ethanol 10 9 10 0 0 0 0 1 0 

Methanol 1 1 1 8 9 9 1 0 0 

Acetone 0 1 9 0 0 0 10 9 9 

 

 

Table 6. Calculation of precision, accuracy and recall in dynamic experiment 
Starting 

point (m) 
Gas Type 

G1-1 G1-2 G1-3 

Pre Acc Rec Pre Acc Rec Pre Acc Rec 

1 

Ethanol 100.0 96.7 100.0 90.9 96.7 100.0 100.0 100.0 100.0 

Methanol 100.0 96.7 90.0 100.0 96.7 90.0 100.0 100.0 100.0 

Acetone 90.9 96.7 100.0 100.0 96.7 100.0 100.0 100.0 100.0 

2 

Ethanol 90.9 93.3 100.0 81.8 90.0 90.0 83.3 93.3 100.0 

Methanol 100.0 93.3 80.0 100.0 90.0 90.0 100.0 93.3 90.0 

Acetone 90.9 93.3 100.0 90.0 90.0 90.0 100.0 93.3 90.0 
Average 95.5 95.0 95.0 93.8 93.3 93.3 97.2 96.7 96.7 

 

 

5. CONCLUSION 

Metal Oxide Semiconductors sensors are good to be used as classifiers. They are stable, sensitive to 

the changes, and really selective. However, some treatments should be done before employing these sensors 

in odor classification or localization. These sensor would not show their stability when they are not being 

heated for several hours of their usage. They would measure wrong concentration and the value of 

measurement would swing with a wide range. Therefore, heating before usage become one of the key in odor 
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classification task. The other problems often occured are unlinear data. Sometimes, the data of the sensors 

has a wide range of variation. If it happened, a preprocessing data is needed. The prepocessing data could 

help to ommit the error data occur in the experiment. 
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